] ω , , / T] / c [ [x,t] ] =
] ω , , / T] / c [ [x,t] ] =
] ω , , / T] / c [ [x,t] ] =
Uma integral de superfície é uma generalização das integrais múltiplas sobre uma superfície.[1][2][3] Dada uma superfície S, pode-se integrar sobre ela um campo escalar ou um campo vetorial. Aplicações de integrais de superfícies aparecem em vários ramos da ciência e das engenharias, tais como em problemas envolvendo fluxo de fluido e de calor, eletricidade, magnetismo, massa e centro de gravidade.[4] Por exemplo, ao integrarmos uma função densidade de massa sobre uma superfície, obteremos a massa aplicada sobre a superfície.[2] Em uma superfície orientável, a integral de superfície do produto interno de um campo vetorial pelo campo normal à superfície fornece o fluxo desse campo, indicado por pela letra grega maiúscula Φ.[3]
Definição
Seja , , uma função definida em todos os pontos de uma superfície . A integral de superfície de sobre é definida por[2]:
onde, é o elemento infinitesimal de área sobre a superfície.
Se é uma superfície orientável, então definimos a integral de superfície de um campo vetorial sobre por[3]:
onde, é o campo normal escolhido na orientação da superfície. O integrando na forma de produto escalar evidencia que somente as componentes do campo perpendiculares à superfície contribuirão no cálculo do fluxo.[4]
Supondo que é um subconjunto de (no caso de = 3, representa um volume 3D no espaço cartesiano), que é um espaço compacto e é uma função definida por partes nas suas arestas formadoras (também indicada com ). Se é um campo vetorial contínuo e diferenciável definido na vizinhança de , então, pelo Teorema de Gauss:
Em que
- é uma integral tripla no volume
- é o divergente do campo
- é a borda ou superfície delimitadora de
- é o vetor normal unitário exterior
- é a integral de superfície sobre
Na prática, isso significa que, dado um campo vetorial de classe que contém uma superfície fechada delimitando um volume em aberto, orientada pela normal unitária exterior, o fluxo sobre a superfície é numericamente igual à integral do divergente de no interior de
É um resultado importante por estabelecer uma relação entre divergência de um campo vetorial com o valor da integral de superfície do fluxo definido pelo campo. É fundamental no estudo matemático da Física, em particular eletrostática e dinâmica dos fluidos.
Comentários
Postar um comentário